Интересное

Сколько хромосом у куриц и петухов. Люди настолько же близки курам, как и к шимпанзе? Общее о хромосомах животных

Сколько хромосом у петухов и курей, Вы узнаете из этой статьи.

Сколько хромосом у петуха и курицы?

После многочисленных исследований ученые выяснили, что организм петуха и курицы содержит одинаковое количество хромосом – 78 единиц.

Петух является самцом курицы, самцом семейства курообразных. От самок их отличает крупный гребень, серьги и пышное, разноцветное хвостовое оперенье.

Интересно, что у птиц, в отличие от людей, половую принадлежность определяют не набор XX (женский организм) или XY (мужской организм), а ZZ и ZW наборы соответственно. Также только у куриц клетки их организма знают свой будущий пол еще до появления птенцов на свет. Ученые в недоумении, какая же у них система определения пола, ведь с таковой они раньше не сталкивались. Таким образом, клетки птицы сами определяют его. Они не подчиняются командам вырабатываемых половых желез, а ведут свой внутренний распорядок.

Что такое хромосомы?

Хромосомы – это генетический материал, который находится в клетке организма. В каждой из них содержится молекула ДНК в скрученном виде спирали. Полный набор хромосом именуется кариотипом. Каждая хромосома – это комплекс белков и ДНК. А все виды живых организмов обладают своим, постоянным и отличным от остальных хромосомным видовым набором.

Внешний вид хромосомы напоминает длинную нить, на которую нанизаны сотни бусинок. Каждая из них является геном. К тому же бусинки имеют свое строго зафиксированное место на хромосоме, именуемое локусом и она управляет отдельным признаком или целой группой признаков индивидуума.

В настоящее время никто не сомневается, что первоначальную детерминацию пола обусловливают половые хромосомы.

Однако механизм их действия и даже общая картина хромосомного аппарата еще недостаточно изучены. Нет единого мнения о количестве хромосом даже у такого хорошо изученного вида, как домашняя курица. Матти сообщает, что хромосомы птиц наименее исследованы из всех классов позвоночных животных в связи с большим количеством хромосом у птиц и малой их величиной. Автор приводит следующие литературные данные о количестве хромосом у курицы: 28, 32, 36, 66, 74 и 78. Матти считает правильным последнее количество, причем крупных хромосом имеется всего 12. По-видимому, Ныокамер, Донелли и Фарбс, считая, что у кур имеется 5 пар соматических и 1 пара половых хромосом, учитывают только эти крупные хромосомы. Матти приводит также данные о количестве хромосом у ряда видов птиц: Oceanodroma lencorrhoa - 74, Phalacrocorax carbo - 70, Sternula albifrons - 66, Larus argentatus - 66, Brachyramphus marmoratus - 50, Lunda cirrhata - 50, Anas platyrhynchos - 80 и Coturnix coturnix - 78. Джафф и Фекхеймер обнаружили, что у кур, индеек и перепелов имеется 70-80 хромосом, и подчеркивают, что количество хромосом для каждого вида константно.

Все эти хромосомы, кроме одной пары, являются соматическими. В половых клетках самца содержится одна пара половых хромосом, которая, по мнению разных исследователей, является либо первой, либо пятой парой, а по новейшим данным - 4-5-й парой. Не решен до сих пор также вопрос о том, имеет ли самка птиц одну половую Х-хромосому или же одну Х-хромосому и одну Y-хромосому. Во всяком случае ясно, что пол у птиц определяет самка (у млекопитающих - самец), так как ее гаметы разные (гетерогаметный тип): половина содержит Х-хромосому, а половина - либо Y-хромосому, либо совсем не содержит половых хромосом, в то время как все гаметы самца содержат всегда одну Х-хромосому (гомогаметный тип). Даже в новейших исследованиях по этому вопросу имеются противоречия. Джафф и Фекхеймер считают, что у самок птиц имеется только одна половая хромосома, а Бамни с соавторами убедительно доказывает наличие второй хромосомы у самок кур, индеек и перепелов (которую авторы называют W-хромосомой), расположенной довольно далеко от первой (которую авторы называют Z-хромосомой) и имеющей в 8-10 раз меньший размер. Эта картина, как отмечают авторы, отличается от того, что имеет место у гетерогаметного пола млекопитающих (у самцов). У самцов птиц, по данным авторов, две половые хромосомы связаны между собою, составляя как бы одну хромосому.

Бенуа считает, что в Х-хромосомах содержится «мужской фактор - М», а в гамете без половых хромосом - «женский фактор - F». Поэтому при оплодотворении получаются зиготы либо FMM (обеспечивающие преимущество М и обусловливающие самца), либо FFMM (преимущество F - самка). Автор приходит к выводу, что это генетическое преимущество автоматически ориентирует развитие гонады в семенник или яичник, являясь первым агентом половой дифференциации. Развивая это положение, Ньюкамер, Донелли и Фарбс считают, что основным фактором, определяющим детерминацию пола, является соотношение между соматическими и половыми хромосомами.

Рассмотрим теперь, как представляют себе исследователи реализацию генных потенций при дифференциации пола. Одной из первых отметила доминантность женского полового гормона Данчакова. При введении женского гормона особям генетически мужского пола, по красочному выражению автора, «генетическая конституция мужских хромосом зародышевых клеток и соматических тканей оказывается бессильной сопротивляться энергичному стимулу гормона, вводящему антагонистические реакции доминантного пола - женского». Обсуждая роль генного механизма и половых гормонов в дифференциации полов, Вилье, Галагер и Кох считают, что мужская зигота у куриных эмбрионов содержит генетические факторы обоих полов и что первичным в детерминации мужского пола эмбриона является доминирование мужских генетических факторов над женскими; интерсексуальное же состояние следует считать интенсификацией женских факторов мужской зиготы инъецированными женскими половыми гормонами. Авторы отмечают удивительное сходство между действием генов и гормонов в детерминизме пола эмбриона. Считая, что кора и медулла гонады имеют противоположную половую тенденцию, Бенуа доказывает, что химические вещества, выделяемые генами с самого начала развития гонад, определяют развитие коры или медуллы в гонаде. Однако автор не уточняет ни химическую природу этих веществ, ни того, идентичны ли они гормонам, как считает Вольф, или нет. Домм считает, что гены обусловливают интенсивность гормональной секреции и тот гонадный компонент (кора или медулла), который имеет большую интенсивность секреции, детерминирует пол. В связи с тем что у амфибий в отличие от птиц гетерогамный пол мужской, у них более эффективен мужской гормон, а у птиц - женский. Поэтому автор считает, что дифференциация полов у птиц обусловливается женским гормоном, а мужской имеется у обоих полов, но подавляется женским. Автор приходит к заключению, что гетерогаметный пол имеет бисексуальный гормональный потенциал, т. е. самки птиц способны продуцировать и женский, и мужской гормоны. У некоторых круглоротых бисексуальность сохраняется и во взрослом состоянии, но у большинства позвоночных гермафродитизм - это аномалия. Вилье и Венигер приходят к сходному выводу, что гены контролируют количество продуцируемых гормонов, а от них в свою очередь зависит детерминация пола. Противоположное мнение высказывает Бёрнс. Автор считает, что первичные половые клетки не влияют ни на гистологическую структуру гонад, ни на детерминацию пола. По мнению автора, пол гонады определяется структурными элементами гонадообразующего участка, вне зависимости от генетической конституции включенных первичных половых клеток, которые даже в отношении образования гамет индифферентны, или бипотенциальны.

Приведем несколько экспериментальных работ, помогающих уяснить роль отдельных компонентов гонады в детерминации пола. Хаффен выяснила, что зародышевый эпителий самки всегда дифференцируется в кору яичника, вне зависимости от того, развивался ли он с медуллой самки или самца. Зародышевый же эпителий самца, взятый до половой дифференциации (5-6-й день инкубации), подвергается влиянию ткани, с которой он находится в контакте. Итак, данные автора показывают, что кора гонады самца и гонады самки неравноценны. Следовательно, концепции Бенуа и Бёрнса, придающих большое значение в детерминации пола тому, какой компонент гонады (кора или медулла) доминирует в развитии, неправильны. На основании результатов опытов по инъекции мужских и женских половых гормонов Гамильтон приходит к выводу, что нормальная, специфическая для данного пола форма регрессии мюллеровых каналов (с 5- 6-го дня - начала дифференциации мочеполовой системы, до 8- 9-го дня - начала регрессии каналов) происходит благодаря стимуляции гормонами неизвестных, генетически определяемых внутриклеточных рецепторов и что программированная инволюция мюллеровых каналов вызвана подавлением окислительных процессов и освобождением протеолитических и гидролитических энзимов, характерных для ткани, проходящей дегенерацию.

На основании того, что переделка женского пола при введении андрогенных гормонов не удается, а при гетеросексуальном парабиозе или имплантации самкам семенников бывает удачной, Вичи и Дэйл высказывают предположение об образовании животными раздельнополых видов веществ, подобных антителам, которые антагонистичны или полностью подавляют развитие половых желез противоположного вида.

Фабер косвенно показал связь между гонадотропным гормоном и детерминацией пола, опровергая мнение Вилье об отсутствии этой связи. Обобщая свои наблюдения по ряду видов птиц (мускусные утки, домашние утки, гибриды между ними, ястреба), автор обнаружил, что у пола, имеющего больший вес и размер тела, в гипофизе наблюдались ацидофильные клетки большего размера.

1. Какой набор половых хромосом характерен для соматических клеток мужчины? Женщины? Петуха? Курицы?

ZZ, ZW, WW, XX, XY, YY.

Набор половых хромосом, характерный для соматических клеток мужчины – XY, женщины – XX, петуха – ZZ, курицы – ZW.

2. Почему у большинства раздельнополых животных появляется примерно одинаковое количество потомков мужского и женского пола?

Это связано с тем, что у большинства раздельнополых животных один пол является гомогаметным, а другой – гомогаментым. Особи гомогаметного пола имеют одинаковые половые хромосомы и, следовательно, в отношении половых хромосом формируют один тип гамет. У особей гетерогаметного пола – две разные половые хромосомы (или одна – непарная), значит, в отношении половых хромосом они формируют два типа гамет.

Пол потомка определяется типом половой клетки гетерогаметного родителя, участвовавшей в оплодотворении. А поскольку гетерогаметные особи образуют два типа гамет в равном соотношении, то в потомстве наблюдается расщепление по полу 1: 1.

Например, у человека в женском организме образуется один тип яйцеклеток: все они имеют набор хромосом 22А + Х. В мужском организме формируются два типа сперматозоидов в равном соотношении: 22А + Х и 22А + Y. Если яйцеклетку оплодотворяет сперматозоид, содержащий Х-хромосому, из зиготы развивается женский организм. Если в оплодотворении участвует сперматозоид с Y-хромосомой, из зиготы развивается ребёнок мужского пола. Поскольку оба типа мужских гамет образуются с одинаковой вероятностью, в потомстве наблюдается расщепление по полу 1: 1.

3. Яйцеклетка шимпанзе содержит 23 аутосомы. Сколькими хромосомами представлен кариотип шимпанзе?

Яйцеклетка шимпанзе имеет гаплоидный (1n) набор хромосом. Помимо 23 аутосом, она содержит одну половую хромосому (Х). Значит, гаплоидный набор шимпанзе представлен 24 хромосомами.

Соматические (диплоидные) клетки шимпанзе содержат 48 хромосом. Таким образом, кариотип шимпанзе представлен 48 хромосомами (2n = 48).

4. Какие признаки называются сцепленными с полом? Каковы особенности наследования этих признаков?

Признаки, которые определяются генами, расположенными в половых хромосомах, называются признаками, сцепленными с полом.

Если гены, определяющие альтернативные признаки, локализованы в аутосомах, то наследование этих генов и фенотипическое проявление соответствующих признаков в потомстве не зависит от того, кто из родителей (мать или отец) обладал тем или иным признаком.

В отличие от наследования аутосомных генов, наследование генов, локализованных в половых хромосомах, и проявление соответствующих признаков имеет характерные особенности. Они связаны с различием в строении половых хромосом у особей гетерогаметного пола.

Например, у человека в Х-хромосоме расположены гены, контролирующие свёртывание крови, цветоощущение, развитие зрительного нерва и многие другие признаки. В то же время Y-хромосома этих генов не содержит. Поэтому у женщин (ХХ) проявление того или иного признака, сцепленного с Х-хромосомой, определяется двумя алельными генами, а у мужчин (ХY) – одним, причём этот ген наследуется только от матери (т.к. отец передаёт сыну Y-хромосому) и всегда проявляется в фенотипе, независимо от того, доминантным является или рецессивным.

Поэтому, например, в семье, где мать является носительницей гемофилии, а отец – здоров, все дочери имеют нормальную свёртываемость крови (хотя при этом могут быть носительницами заболевания), а среди сыновей наблюдается расщепление по фенотипу: половина – здоровые, половина – гемофилики. В семье, где мать имеет нормальную свёртываемость крови (и при этом не является носительницей), а отец – гемофилик, рождаются дети с нормальной свёртываемостью крови, однако все дочери наследуют от отца ген гемофилии (т.е. являются носительницами болезни).

5. Докажите, что генотип живого организма представляет собой целостную систему.

Многие признаки живых организмов контролируются одной парой аллельных генов. Между аллельными генами наблюдаются различные типы взаимодействий. В ряде случаев результатом такого взаимодействия может быть появление качественно нового признака, не определявшегося ни одним из генов по отдельности (например, у человека кодоминирование генов I A и I B приводит к формированию IV группы крови).

В то же время у живых организмов известно огромное количество признаков, которые контролируются не одной, а двумя и более парами генов. Взаимодействием неаллельных генов определяются, например, рост, тип телосложения и цвет кожи у человека, окраска шерсти и оперения у многих млекопитающих и птиц, форма, величина, цвет плодов и семян растений и др. Часто наблюдается и противоположное явление, когда одна пара аллельных генов влияет сразу на несколько признаков организма. Кроме того, действие одних генов может быть изменено соседством других генов или условиями окружающей среды.

Таким образом, гены тесно связаны и взаимодействуют друг с другом. Поэтому генотип любого организма нельзя рассматривать как простую сумму отдельных генов. Генотип – это сложная целостная система взаимодействующих генов.

6. Дальтонизм - рецессивный признак, сцепленный с Х-хромосомой. В семье, где мать обладает нормальным цветоощущением, родилась дочь-дальтоник. Установите генотипы родителей. Какова вероятность рождения у них здорового сына?

● Введём обозначения генов:

А – нормальное цветоощущение (норма);

а – дальтонизм.

● Определим генотипы родителей. В этой семье родилась дочь-дальтоник, её генотип X a X a . Известно, что ребёнок наследует один из аллельных генов от матери, а другой – от отца. Следовательно, генотип матери, имеющей нормальное цветоощущение – X A X a , т.е. она является носительницей дальтонизма. Генотип отца – X a Y, он страдает дальтонизмом.

● Запишем скрещивание:

Таким образом, вероятность рождения в этой семье здорового сына составляет 25%.

Ответ: вероятность рождения здорового сына – 25%.

7. У полярной совы оперённые ноги доминируют над голыми. Этот признак контролируется аутосомными генами. Длинные когти - доминантный признак, который определяется геном, локализованным в Z-хромосоме.

Самку с оперёнными ногами скрестили с самцом, имеющим длинные когти и оперённые ноги. В результате получили потомство с различным сочетанием всех фенотипических признаков. Какова вероятность (%) появления среди потомства самца с голыми ногами и короткими когтями?

● Введём обозначения генов:

А – оперённые ноги;

а – голые ноги;

B – длинные когти;

b – короткие когти.

● У птиц гетерогаметным полом является женский, поэтому для самки с оперёнными ногами можно записать фенотипический радикал А–Z – W, а для самца, имеющего оперённые ноги и длинные когти: A–Z B Z – .

В потомстве наблюдались различные сочетания фенотипических признаков. Это значит, что потомки имели оперённые (A–) и голые ноги (aa), длинные (Z B W для самок, Z B Z – для самцов) и короткие когти (Z b W для самок, Z b Z b для самцов).

На основании этого дополняем генотипы родительских особей недостающими рецессивными генами. Таким образом, генотип самки – AaZ b W, самца – AaZ B z b .

● Запишем скрещивание:

Итак, вероятность появления среди потомства самца с голыми ногами и короткими когтями составляет 1/16 × 100% = 6,25%.

Ответ: вероятность появления самца с голыми ногами и короткими когтями – 6,25%.

8. У одного из видов бабочек гетерогаметным полом является женский. Проведено скрещивание красного самца, имеющего булавовидные усики, с жёлтой самкой с нитевидными усиками. Половину потомства составили жёлтые самцы с нитевидными усиками, другую половину - красные самки с нитевидными усиками. Как наследуются окраска тела и тип усиков? Какие признаки доминируют? Установите генотипы скрещиваемых форм и их потомства.

● Проанализируем наследование каждого признака в отдельности.

При скрещивании самки, имеющей нитевидные усики, с самцом, имеющим булавовидные усики, всё потомство унаследовало нитевидную форму усиков. Следовательно, нитевидные усики полностью доминируют над булавовидными.

Введём обозначения генов:

B – нитевидные усики;

b – булавовидные усики.

Допустим, что данный признак сцеплен с полом. Тогда генотип самки – Z B W, самца – Z b Z b . У родительских особей с такими генотипами в потомстве все самцы имели бы нитевидные усики: Z B Z b , а самки – булавовидные усики: Z b W. Это противоречит условию задачи, следовательно, тип усиков определяется аутосомными генами.

Наличие единообразного потомства (все с нитевидными усиками) позволяет сделать вывод, что родительские особи были гомозиготными. Таким образом, генотип самки – BB, самца – bb.

● В результате скрещивания жёлтой самки с красным самцом, в потомстве все самки унаследовали отцовский признак (красная окраска), а самцы – материнский (жёлтая окраска). Такой характер наследования свидетельствует о том, что окраска тела – признак, сцепленный с полом.

Если красная окраска (А) доминирует над жёлтой (а), то самка имеет генотип Z a W. Для самца можно записать фенотипический радикал Z A Z – . Независимо от того, является ли он гомозиготным или гетерозиготным, в потомстве должны были появиться красные самцы – Z A Z a . Однако все самцы были жёлтыми.

Следовательно, предположение о том, что красная окраска доминирует над жёлтой, оказалось неверным. На самом деле всё наоборот: жёлтая окраска доминирует над красной.

● Введём обозначения генов:

А – жёлтая окраска;

a – красная окраска.

Жёлтая самка имеет генотип Z A W, красный самец – Z a Z a . Следовательно, в потомстве все самки должны быть красными: Z a W, а самцы – жёлтыми: Z A Z a . Это удовлетворяет условию задачи.

● Запишем скрещивание:

Ответ: Окраска тела – признак, сцепленный с полом, тип усиков – аутосомный признак. Жёлтая окраска тела полностью доминирует над красной, а нитевидные усики – над булавовидными. Родительские особи имеют следующие генотипы: самка – Z A WBB, самец – Z a Z a bb. В потомстве все самки имеют генотип Z a WBb, самцы – Z A Z a Bb.

Поговорим о том, сколько хромосом у петуха и курицы. Как и у млекопитающих, клетки этих птиц имеют женский или мужской хромосомный набор. Ученые долгое время утверждали, что невозможно определить пол эмбриона курочки до определенного момента развития. Но с помощью лабораторных исследований удалось выяснить, что это не так. Клетки зародыша хранят информацию о половой принадлежности уже с третьей недели формирования.

О курицах и петухах

Куры – одни из распространенных жителей фермерских хозяйств. В благоприятных условиях они могут жить 12-15 лет. Но на практике такое встречается редко. Птицу забивают после 2-3 лет жизни, когда у нее падает яичная производительность. На крупных птицефабриках куриц отправляют на убой через год после первой кладки.

Средний вес самки – 3,5 кг, а яйценоскость — 120 яиц в год. Но производительность зависит от породы и условий содержания. Узнайте больше в статье «Что за птица домашняя курица».

Петух является хозяином курятника, знаменит своенравным характером и мужеством. Он главный зачинщики драк в стаде. Поэтому в курином семействе должен жить только один петушок. Иначе постоянно будут конфликты.

На каждого самца приходится около 10 курочек. Если их будет больше, начнутся проблемы со здоровьем и производительностью.

Главные отличия самцов от самок:

  • длинный хвост;
  • большие сережки;
  • роскошное яркое оперение.

Гордостью петушков является мясистый алый гребень. Подробности в статье «Как должен выглядеть петух: описание птицы».

Поговорим о хромосомах

Где находятся

Это нуклеопротеидные структуры, располагающиеся в клетках организма птиц. Они являются носителями генетической информации, состоят из спиралеобразных молекул ДНК и белков.

Полный хромосомный набор кур называется кариотип. Он включает информацию о форме, размерах и численности генетического материала.

Хромосомы есть у всех живых организмов. Но у каждой птицы набор свой. Он постоянный и не меняется с возрастом.

Внешне структуры похожи на длинную нитку. На ней располагается множество бусинок – генов. Каждый ген занимает определенное место – локус.

За что отвечают

Гены никогда не передвигаются по хромосоме. Их задача – управление признаками индивидуума.

Хромосомы занимаются хранением и передачей накопленной информации от матери к потомству.

После многочисленных исследований ученые установили, сколько хромосом у курицы и петуха – 78. Это достаточно большое количество по сравнению с другими млекопитающими. Например, у людей их всего 46.

В ходе эволюции куры и петушки потерпели меньше всего генетических изменений, по сравнению с другими птицами.

Что определяет половую принадлежность птиц

78 хромосом бывает только у здоровых петушков или кур. Если во время формирования яиц у самки начнутся проблемы с развитием эмбриона, их количество может поменяться.

У кур XY – набор хромосом, у петухов – XX. У многих млекопитающих, в том числе человека, наоборот.

Ученые из Великобритании провели исследование здоровых эмбрионов кур. Выяснилось, что менее чем через день после оплодотворения определяется половая принадлежность эмбриона.

У других млекопитающих это происходит только после формирования репродуктивных желез. Данный факт удалось определить по выработке РНК-молекул.

Подробные инструкции об определении пола цыпленка до вылупления указаны в статье «Как можно определить пол цыпленка по яйцу».

Как узнать пол после вылупления читайте в статье «Петух или курица: как определять пол цыпленка».

Уважаемые фермеры! Если вы нашли полезную для себя информацию, поставьте, пожалуйста, лайк.